

New-generation Aura OMI Volcanic SO₂ Product: Algorithm Description, Initial Results, and Data Continuation with S-NPP OMPS

Can Li ^{1,2}, Nick Krotkov ², Simon Carn ³, Yan Zhang ^{1,2}, Rob Spurr ⁴, Joanna Joiner ²

¹UMD ESSIC, ²NASA GSFC, ³Michigan Tech., ⁴RTS Inc.

Aura Science Team Meeting August 30, 2016 Rotterdam, The Netherlands

Why a New OMI Volcanic SO₂ Product?

- Previous generation OMI/OMPS volcanic SO₂ product: LF algorithm fast and sensitive, but has relatively large noise/biases.
- Also known to <u>underestimate SO₂ for large eruptions</u> (e.g., Kasatochi).

OMPS NRT LF TRL retrievals for 12/08/2015, a few days after the Mt. Etna eruption.

How Do We Improve OMI Volcanic SO₂ Retrievals?

- Based on the PCA approach, using spectral features (PCs) extracted from radiance data in fitting – minimize interferences such as ozone and the Ring effect.
- A lookup table approach for SO₂ Jacobians (geometry, reflectivity, O₃).
- Predefined SO₂ profiles centered at 3 (TRL), 8 (TRM), 18 (STL) km, also a new research product for 13 km profile (TRU).
- Derive SLER at 342, 354, and 367 nm, extrapolated to SO₂ fitting window – first order effects of aerosols/ clouds/surface.
- Iteration calculate updated SO₂ Jacobians based on SO₂ from the previous step, also determine optimal spectral window in each step.

Algorithm Flowchart

Determination of the Fitting Window

- ✓ Large interpolation error in SO₂ Jacobians at short wavelengths due to the saturation of SO₂ absorption;
- Use wavelength with max dN/dSO₂ as the lower limit for fitting window in each step;
- Maximal sensitivity and small interpolation error.

New Operational OMI Volcanic SO₂ Product Greatly Reduces Bias and Noise over Background Areas

TRL Retrievals, August 5, 2006 [Li et al., 2016]

New Operational OMI Volcanic SO₂ Product Greatly Reduces Bias and Noise over Background Areas

New OMI Operational Volcanic SO₂ Greatly Reduces Low Bias in LF Product for Large Eruptions

Kasatochi eruption in August 2008, new estimated loading ~1700 kt, in much better agreement with other estimates [*Li et al.*, 2016] . LF algorithm ~100% low bias.

New OMI Operational Volcanic SO₂ Greatly Reduces Low Bias in LF Product for Large Eruptions

Sierra Negra eruption in 2005, max SO_2 from new operational PCA algorithm ~1100 DU, in agreement with the offline ISF algorithm [*Li et al.*, 2016]

Daily OMI/OMPS regional volcanic SO₂ loading near Hawaii (PCA 3-km/TRL retrievals)

Five days with r < 0.3, why?

- ✓ Five days with r < 0.3: 02/05/2012, 10/02/2012, 05/14/2013, 11/06/2013, and 11/09/2014.
- ✓ For all five days, the plume was covered by OMI pixels near the nadir but by OMPS pixels near the edge of the swath.

Large Eruption: Kelut in 2014

- ✓ Merged OMI+OMPS provides full coverage and fine spatial detail
- ✓ Agrees with OMPS only SO₂ mass to within 3%

[Li et al., 2016]

Conclusions

- New generation OMI volcanic SO₂ data product based on PCA approach, publicly released in June 2016.
- Significant improvement over the previous product –
 1) reduced noise/artifacts; 2) reduced low bias for large eruptions
- Very good consistency between new OMI volcanic SO₂ data and OMPS research product based on the same PCA algorithm – good data continuity from OMI to OMPS.